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Abstract 

Introduction Sleep disorder is often the first symptom of age-related cognitive decline associated with Alzheimer’s 
disease (AD) observed in primary care. The relationship between sleep and early AD was examined using a patented 
sleep mattress designed to record respiration and high frequency movement arousals. A machine learning algorithm 
was developed to classify sleep features associated with early AD.

Method Community-dwelling older adults (N = 95; 62–90 years) were recruited in a 3-h catchment area. Study 
participants were tested on the mattress device in the home bed for 2 days, wore a wrist actigraph for 7 days, and 
provided sleep diary and sleep disorder self-reports during the 1-week study period. Neurocognitive testing was com-
pleted in the home within 30-days of the sleep study. Participant performance on executive and memory tasks, health 
history and demographics were reviewed by a geriatric clinical team yielding Normal Cognition (n = 45) and amnestic 
MCI-Consensus (n = 33) groups. A diagnosed MCI group (n = 17) was recruited from a hospital memory clinic follow-
ing diagnostic series of neuroimaging biomarker assessment and cognitive criteria for AD.

Results In cohort analyses, sleep fragmentation and wake after sleep onset duration predicted poorer executive 
function, particularly memory performance. Group analyses showed increased sleep fragmentation and total sleep 
time in the diagnosed MCI group compared to the Normal Cognition group. Machine learning algorithm showed that 
the time latency between movement arousals and coupled respiratory upregulation could be used as a classifier of 
diagnosed MCI vs. Normal Cognition cases. ROC diagnostics identified MCI with 87% sensitivity; 89% specificity; and 
88% positive predictive value.

Discussion AD sleep phenotype was detected with a novel sleep biometric, time latency, associated with the tight 
gap between sleep movements and respiratory coupling, which is proposed as a corollary of sleep quality/loss that 
affects the autonomic regulation of respiration during sleep. Diagnosed MCI was associated with sleep fragmentation 
and arousal intrusion.
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Age increases the risk for mild cognitive impairment 
(MCI), or early dementia, which may impact memory 
and/or non-memory cognitive domains but typically 
spares functional abilities [1, 2]. MCI is linked to genetic 
vulnerability (APOE4), lifestyle and associated comorbid-
ities (e.g., cardiovascular disease, traumatic brain injury, 
socioeconomic status (SES), education, obesity, depres-
sive symptoms, etc.) [2, 3]. Early Alzheimer’s disease 
accounts for approximately 50% of MCI incidence [4] and 
is characterized by cognitive decline in memory domains 
(amnestic type); whereas, vascular dementia, the second 
most common subtype of dementia with an incidence of 
14.5%, is characterized by deficits in non-memory cogni-
tive domains (e.g. visuospatial skills, attention, language, 
etc.) without memory impairment (nonamnestic type, [5, 
6]). A nongradual progression of cognitive deficits is con-
sistent with neurodegenerative disease [7].

Biomarkers in early Alzheimer’s disease
In 2018, the National Institute on Aging and Alzheimer’s 
Association Research Framework, updated the defini-
tion and diagnostic process to identify Alzheimer’s dis-
ease (AD) using pathology markers documented in vivo 
or at postmortem examination [8]. The advancement in 
biomarker diagnostic decision making moves away from 
a syndromal approach (i.e., symptoms and behavio-
ral deficits) to a biological approach for staging AD and 
other neurological diseases. The understanding of beta 
amyloid (Aβ) and tau peptides as biomarkers in the CSF 
(Aβ42, Aβ40, t-tau, p-tau) in AD development has led to 
the AT(N) scoring system for neuroimaging assessment 
of AD and other neurological disease: A indicates PET 
ligand binding of Aβ plaques or low CSFAb42, T, CSF 
phosphorylated tau, N, neurodegeneration or injury (N) 
[9, 10]. Current progress in detection of AD and other 
neurological disease depends on the presence of Aβ with 
or without tau or neurodegeneration in CNS and plasma 
biomarkers of disease [11, 12], although p-tau plasma 
biomarker, NF1 [13] and p-tau217 [14] show promise in 
longitudinal studies for early AD. The preclinical phase 
based on biomarker positivity in CSF and PET, occurs 
prior to the onset of symptoms and is longer than the 
time of age proposed in MCI-AD. A previous preclinical 
period is not always observed in vascular MCI etiology 
[15].

Sleep, memory and AD
Sleep is an example of another area of functional change 
in aging that is associated with cognitive loss [16]. Recent 
animal and human studies of Aβ metabolism support the 
relationship between sleep quality, cycles of Aβ clearance 
and AD pathogenesis [17, 18]. The long pre-dementia 
phase for aMCI is approximately 6–10 years, and results 

from prospective studies have identified sleep disorder as 
a frequent symptom linked with disease progression [15]. 
A critical question is whether sleep abnormalities are 
present early in the process.

In community dwelling aging adults, disturbances in 
sleep and circadian rhythms correlate with early signs of 
neurodegeneration. Several studies in community aging 
samples have shown that poor sleep quality and chronic 
sleep loss are associated with cognitive decline [19–21]. 
Recent community studies found that poorer sleep qual-
ity and shorter or longer sleep duration was associated 
with greater Aβ burden in the cortical and precuneus 
areas, and greater cortical thinning [22, 23], supporting 
an association consistent with preclinical AD and sleep 
disorder. AD risk is increased in persons > 60  years of 
age if sleep duration dips below 6  h/day which leads to 
chronic sleep loss [24]. Untreated sleep disorder rapidly 
converts to chronic sleep deprivation linked to increased 
soluble Aβ [25], as well as other AD and biomarkers in 
the CSF (Aβ42, Aβ40, t-tau, p-tau, and chitinase-3-like 
protein1) which is reversed by sleep extension in animal 
models of aging [26, 27]. In AD-related sleep disorder, 
the hypothesis is that sleep deprivation potentially drives 
disease progression, and that sleep loss is cumulative and 
associates with circadian dysregulation and cognitive 
impairment in the conversion to the AD phenotype [27, 
28].

Memory-related neuroplasticity requires stable sleep 
continuity to achieve memory consolidation. NREM and 
REM sleep stages are critical for memory consolidation, 
a selective domain deficit in aMCI and AD [29, 30]. MCI 
sleep complaints are detected in some actigraphy studies 
in the form of sleep disturbances such as wake after sleep 
onset (WASO); arousals/hour of sleep; and poor sleep 
stage stability [21, 23]. EEG deficits in fast-frequency 
sleep spindle deficits are magnified in patients with MCI 
and AD [31, 32]. In normal aging and middle-aged adults, 
sleep spindles decrease non-linearly with age and spin-
dle cluster size predict memory consolidation, an effect 
that was disrupted by sleep fragmentation. Benca and 
colleagues have found that in AD-enriched, cognitively 
unimpaired patients spindle loss correlated with over-
night memory deficits, and was associated with increased 
microglia activation, phosphorylated tau and synaptic 
degeneration [33].

Chronic sleep loss over time suppresses arousability 
during sleep epochs, reduces daytime alertness, com-
promising cognitive functioning in a dose dependent 
manner, and impairs circadian timing systems [34]. 
Importantly, autonomic changes also occur in cardiores-
piratory regulation during sleep that emerge with chronic 
sleep loss [35, 36]. In our prior work, which forms the 
basis of the current study, we have observed that reduced 
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arousability from chronic sleep deprivation can be moni-
tored by recording micro-sleep movements (SM) which 
are periodic (circa 2 min) and decrease in amplitude and 
duration during sleep loss such as when CNS injury or 
disease is present [37–40]. The CNS arousal system is 
dampened during chronic sleep loss, which similarly 
affects periodic micro-sleep movements, supporting this 
measure as or part of the arousal system. The patented 
mattress sleep device is uniquely sensitive to rapid, low 
impact movement events not detected by actigraphy, 
and often ruled-out in polysomnography as noise. We 
report in the current study that the periodic (circa 2 min) 
property of the sleep movement arousal system (SM) is 
coupled to respiratory frequency upregulation during 
normal sleep.

The first hypothesis of the present study examines the 
sleep-cognitive link in our aging community cohort. We 
hypothesized that impaired sleep quality (assessed using 
actigraphy) is associated with reduced cognitive perfor-
mance in our community cohort. Cognitive performance 
tested across domains was compared to sleep measures 
across all participants.

The second hypothesis proposes that the novel bio-
metric from the sleep device system (i.e. time latency 
between coupled movement and respiratory events) 
could be used as a possible risk signature of early AD. The 
clinical goal is to ask whether this biometric, acquired 
through noninvasive home-bed recordings, may assist in 
the evaluation of aging patients’ complaints of sleep loss 
and/or cognitive problems to prepare referral for AD and 
other biomarker testing for differential diagnosis.

Method
Participants
The Maine Sleep and Aging Study was conducted 
by the University Maine. The experimental proto-
col was approved by University of Maine Institutional 
Review Board for Research Ethics  (Federalwide Assur-
ance #: FWA00000479; IRB Organization (IORG) 
#: IORG0000642). All experimental protocols were 
approved by this IRB and all methods were carried out 
in accordance with relevant guidelines and regulations 
of this ethics committee. Independent community dwell-
ing, aging adults were sought through advertisement 
within a 3-h catchment area. Inclusionary Criteria: Par-
ticipants were between 60–90  years of age, lived inde-
pendently in the community, were English speaking and 
possessed adequate vision with correction. Exclusionary 
Criteria: Any medical evidence through exam or imaging 
of a neurological, psychiatric or medical disorder other 
than AD as a cause for MCI (e.g. partial list: more than 
one cerebral infarct, poorly controlled diabetes, hypo-
thyroidism, parkinsonism, parasomnia or REM sleep 

disorder, developmental disability, schizophrenia, etc.); 
acute symptom onset; depressive symptoms score on 
CES-D ≥ 16 (Center for Epidemiological Studies Depres-
sion Scale); Epworth Sleepiness Scale score ≥ 10; rest-
less or periodic leg syndrome; hypnotic/ psychotropic 
medication change [37]. History of depression/anxiety 
disorders or > 5  years drug/ alcohol abuse but in recov-
ery was allowed. Figure 1 illustrates that 168 participants 
were recruited and 73 were excluded based on distance 
(n = 22), exclusionary criteria (n = 39), or withdrawal or 
failure to schedule (n = 12). The final sample of 95 par-
ticipants completed the home sleep testing protocol.

Included in the sample was a clinic-diagnosed aMCI 
patient group (MCI-DX; n = 17) recruited from North-
ern Light Healthcare, Bangor, ME by co-author, C.S., 
according to the criteria above and including a complete 
medical review. The diagnosed MCI (MCI-DX) group 
included subjective and family complaints of memory 
problems, and a review of other disease sources of symp-
tomatology. Bio- banked plasma was collected for even-
tual diagnostic confirmation of plasma p-tau/Aβ42 when 
funds become available.

The remaining cohort was evaluated for aMCI diagno-
sis by an expert consensus panel (co-authors C.S., F.A., 
J.A.) using demographics, full battery of neurocognitive 
testing, and comorbidities (MCI-Consensus group, MCI-
CON; n = 33). MCI-CON group met aMCI criteria for 
immediate and delayed verbal and visual memory tasks, 
but were normative on intelligence and cognitive reserve 
measures using Petersen [26] and the DSM-5 [4] criteria; 
Montreal Cognitive Assessment (MoCA) score of 26–19 
(inclusive); delayed recall subtest score of 0 or 1 out of 5; 
normal circadian entrainment to nighttime sleep hours; 
and decision-making capacity to independently consent 
to research. The consensus panel distinguished aMCI 
(MCI-CON; n = 33) and normal cognition groups (NC; 

Fig. 1 Recruitment flowchart shows that of 168 recruited 
participants, 73 were excluded based on exclusionary criteria; 39 
because of distance from the laboratory; 12 participants withdrew 
from the study. Diagnosed MCI patients (n = 17) were referred by C.S. 
from the Mood and Memory Center, Acadia Hospital, Bangor, ME and 
are included
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n = 45). Vascular or mixed MCI were found in two cases 
and were exclusionary.

Instrumentation and measures
SleepMove mattress device and system
The wireless sensor mattress pad is 1  mm in thickness 
within a sealed polyethylene cover that is placed within 
an antimicrobial-resistant fitted sheet positioned beneath 
the bottom bed sheet on the home bed for 2 nights. The 
sensor device design uses 32 distributed piezo-resistive 
pressure sensors to record movement and respiratory 
signals using 54  Hz average sampling rate. The receiver 
unit under the bed records data to a Micro SD card. Sys-
tem algorithms filter sleep movement (SM) bouts (perio-
dicity circa 0.198  Hz) and respiration (periodicity circa 
0.366 Hz) into two data streams. Time series algorithms 
identify SM-RR coupling using a concordance estimate of 
time latency (ms) to capture the time delay between SM 
and RR, thereby calculating the strength of the coupling 
relationship between these two events. Respiratory fre-
quency is indexed by segmentation of RR rate into 2 min 
bins. These data form the basis of artificial intelligence 
(AI) analyses described herein and in technical detail in 
Khosroazad, Abedi & Hayes (in press) [41].

In a standard laboratory and home settings, we vali-
dated concordance of the respiratory inspiratory and 
expiratory cycle and periodicity of standard thermistor 
recordings during sleep contrasted with mattress device 
data. Mattress-derived movement arousals, SM features 
and periodicity have been confirmed through videosom-
nography in prior work [37–43].

Actigraphy
The participants wear Actiwatch 2 (Philips Respiron-
ics, Philips Actiware 6: v.6.0.9), a watch-like actigraphy 

monitor on the non-dominant wrist for seven consecu-
tive nights beginning on night 1 of the study. Actigraphy 
software provides standard sleep–wake measures.

Self‑report
Stanford Sleepiness Scale: queries subjective sleepiness 
with a 7-point Likert scale for 7 consecutive days [44]; 
Epworth Sleepiness Scale: asks about daytime sleepi-
ness and situations [45]; Pittsburgh Sleep Quality Index 
(PSQI): assesses sleep quality over a 1-month time inter-
val with several subscales and a composite score [46]. 
Center for Epidemiological Studies Depression Scale 
(CES-D): 10-item depression scale used for older adults 
[47].

Neurocognitive testing
Montreal Cognitive Assessment (MoCA) screening tool 
for MCI that includes short term and working memory, 
visuospatial, attention, orientation and executive func-
tioning (range score for MCI is 19–25) [48]. Brief Visu-
ospatial Memory Test-Revised (BVMT-R): [49]. Hopkins 
Verbal Learning Test-Revised (HVLT-R) [50]. Boston 
Naming Test (BNT): confrontation naming task [51]. 
Proxies for cognitive reserve were measured by the 
Vocabulary subtest of the Wechsler Adult Intelligence 
Scale (WAIS III; [52]), and American National Adult 
Reading test (AMNART; [53]), both of which are well-
established means of estimating cognitive reserve.

Protocol
Figure  2 shows the testing sequence. Participant eligi-
bility was determined by phone interview screening. 
On study day 1 (night 1), two team members arrived 
at the home at approximately 1700  h to interview 

Fig. 2 Protocol for the home sleep study with participants. SleepMove mattress device was delivered and positioned by the research staff, and 
participants were interviewed following informed consent. Seven days of actigraphy overlapped with the 2 day SleepMove study, and participants 
completed questionnaires on sleep problems
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the participant; administer the MoCA and query: 1.) 
medical comorbidities; 2.) SES (socioeconomic status) 
through longest held career, e.g., secretarial, profes-
sional, homemaker, etc.; 3.) lifestyle and substance use 
using current and former intake of alcohol, tobacco and 
other use; weekly exercise and activities; 4.) obesity risk 
estimated through Body Mass Index; and 4.) self-report 
inventories of sleep problems (see Instrumentation and 
Measures).

The participants slept alone in the home bed on the 
mattress device for 2 consecutive nights. The signal 
acquisition hardware was placed under the bed con-
nected to the mattress pad using a flat wire powered 
by battery. After night 2, the device was picked up and 
data transferred electronically to the laboratory. Partic-
ipants reported bed and wake times and wore the acti-
watch for 7 days. Neurocognitive testing was conducted 
in a home visit for approximately 90  min. The partici-
pant received a $100 Visa gift card for participation.

Statistics and data processing
Multivariable, mixed model regression using group as a 
factor were used for data analysis for actigraphy, neuro-
cognitive and sleep self-report data moderated by cus-
tom covariates as described (e.g., age, education, BMI) 
with IBM-SPSS, V.26. Demographics were analyzed 
with one-way ANOVA for continuous variables and 
Kruskal–Wallis h test for categorical variables. Imputa-
tion was used in < 5% of the data.

For the SM-RR coupling output measure, a super-
vised Neural Network approach was used. SM and RR 
signals were separated in the frequency domain using 
FFT and band pass frequency filters as described in 
Instrumentation and Measures. SM-RR coupling time 
latency was examined in 10 min windows to determine 
the Probability Density Function (PDF) of the maxi-
mum time latencies for each case. Receiver Operating 
Characteristic (ROC) statistics were applied to deter-
mine sensitivity and specificity, AUC (area under the 
curve) and c statistic with confidence interval. ROC 
plot illustrates the diagnostic binary classifier system, 
in this case, MCI vs. NC as its discrimination thresh-
old is varied. Positive predictive values and negative 
predictive values were calculated to identify MCI sta-
tus using sensitivity (true positives) and specificity 
(false positives). Neural Network and the cross-valida-
tion method, Leave-One-Out Covariance (LOOCV), 
was used to train and test the network [54]. Confusion 
matrices of true positive, true negative, false positive 
and false negative were calculated based on the verifi-
cation group that was placed in an incorrect category 
by the trained network.

Results
Demographics
Table  1 displays cross-group findings for health and 
demographic data. ANOVA revealed small but sig-
nificant differences in age (F(2, 94) = 3.39, p < 0.038, 
η2 = 0.069). In post hoc testing, MCI-DX group was sig-
nificantly older than the NC group (p < 0.013). MoCA 
scores also differed by group in ANOVA analyses (F(2, 
94) = 56.51, p < 0.001, η2 = 0.551). Both MCI-DX and 
MCI-CON groups were in the diagnostic range (score 
range 19–24), although MCI-DX scores were signifi-
cantly lower than MCI-CON (p < 0.001), and both MCI 
groups were significantly lower than MCI-NC (p < 0.001). 
Body Mass Index (BMI), a known risk for MCI/AD [39], 
differed by group (F(2, 89) = 3.13, p < 0.049, η2 = 0.067), 
and was significantly higher in MCI-CON than MCI-DX 
(p < 0.015). In nonparametric analyses (Kruskal–Wallis 
H = 4.41, p < 0.036, η2 = 0.027), both MCI groups (MCI-
DX = 46.7%, MCI-CON = 33.3%) were significantly more 
likely to report current depressive symptoms than the 
NC group (13%; p < 0.038).

Neurocognitive performance
aMCI diagnosis criteria require threshold-defined defi-
cits in immediate and delayed verbal and visuospatial 
memory domains with normative scores on cognitive 
reserve and intelligence measures. The clinical criterion 
of cognitive performance > 1.5 S.D. below age-adjusted 
norms as the standard for cognitive impairment revealed 
that 16% of the full cohort had scores at this level, and 
all were from MCI-DX group. MCI-DX group (n = 17) 
repeated the neurocognitive protocol for this study 
although formal diagnostic evaluation had been con-
ducted in the clinic. MCI-CON and NC groups’ decisions 
were based on the consensus panel review.

In Table 2, multivariable regression was used to exam-
ine cognitive performance with group as a factor and 
age and current depressive symptoms as covariates. The 
results confirmed the expected severity stacking of MCI-
DX, MCI-CON and NC groups showing that MCI groups 
have selective memory domain deficits reflected in Hop-
kins Verbal Learning Test, revised (HVLT-R) and Brief 
Visuospatial Memory Test, revised (BVMT-R) measures 
consistent with a selective amnestic cognitive burden in 
these groups. Regression findings for HVLTR-R-total 
recall (F (10, 93) = 246.6, p < 0.001, η2 = 0.967) confirmed 
the group main effect. Post-hoc testing found that MCI-
DX (p < 0.001) and MCI-CON (p < 0.001) performed sig-
nificantly worse than NC group, and MCI-DX performed 
significantly worse than MCI-CON (p < 0.002). HVLTR-
delayed (F (10, 93) = 108.7, p < 0.001, η2 = 0.929) yielded 
the same group findings. MCI-DX (p < 0.001) and MCI-
CON (p < 0.001) performed significantly worse than NC, 
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Table 1 Demographics and Health History in MCI-DX, MCI-CON, and NC Groups

Note: Values are shown as % (n) or mean ± SE, and compared by one-way ANOVA (continuous variables) or Kruskal–Wallis Test (categorical variables). MCI-DX Physician 
diagnosed, MCI-CON Expert panel consensus decision based on clinical status and neuro-cognitive assessments, NC Normal cognition groups. aCurrent use of sleep 
medication was described as any self-reported use of over the counter or prescribed sleep medication over the last month. b Current depressive symptoms were 
indicated by self-report answer to the question “Are you currently feeling depressed?”

Variable
(µ ± SE or % (n))

MCI‑DX
(n = 17)

MCI‑CON
(n = 33)

NC
(n = 45)

p‑value

Age, y 75.94 ± 1.39 73.42 ± 1.24 71.31 ± 0.91 0.038
Female 70.6% (12) 60.6% (20) 77.8% (35) n.s

Race (% white) 100% (17) 100% (33) 97.8% (44) n.s

Years of education 15.07 ± 0.84 15.55 ± 0.53 15.60 ± 0.35 n.s

MoCA 19.76 ± 0.78 22.45 ± 0.48 26.73 ± 0.30 0.001
Lifestyle factors
 Drinking alcohol 33.3% (5) 66.7% (22) 62.2% (28) n.s

 Current use of sleep  medicationa 60% (9) 33.3% (11) 42.2% (19) n.s

 Current or former smoker 53.3% (8) 54.5% (18) 46.7% (21) n.s

Body mass index (BMI) 24.65 ± 1.38 29.37 ± 1.09 27.60 ± 0.86 0.049
OSA 11.8% (2) 36.4% (12) 17.8% (8) n.s

Diabetes 6.7% (1) 27.3% (9) 11.1% (5) n.s

Heart attack or cardiac arrest 20% (3) 12.1% (4) 11.1% (5) n.s

Cardiovascular disease 6.7% (1) 24.2% (8) 13.3% (6) n.s

Cerebrovascular disease 33.3% (5) 9.1% (3) 6.7% (3) n.s

Traumatic brain injury (TBI) 26.7% (4) 15.2% (5) 15.6% (7) n.s

Hypercholesterolemia 53.3% (8) 36.4% (12) 42.2% (19) n.s

Hypertension 33.3% (5) 54.5% (18) 34.1% (15) n.s

Arthritis 46.7% (7) 69.7% (23) 48.9% (22) n.s

Thyroid disease 40% (6) 18.2% (6) 33.3% (15) n.s

Current depressive symptomsb 46.7% (7) 33.3% (11) 13.3% (6) 0.036

Table 2 MCI Severity and Neurocognitive Memory Domain Test Scores

Note. HVLT-R Hopkins Verbal Learning Test-Revised, BVMT-R Brief Visuospatial Memory Test-Revised, BNT Boston Naming Test. All neurocognitive variables are 
expressed as raw scores expressed as group means and standard error. Multivariable regression applied with group factor and neurocognitive tests dependent 
variables adjusted for age and depression was significant for all tests; post-hoc group comparisons are shown in parentheses. MCI-DX = Physician diagnosed MCI; MCI-
CON = Expert panel consensus decision based on clinical status and neuro-cognitive assessments; NC = Normal cognition

Neurocognitive Test MCI Status Ranking
MCI‑DX
(n = 17)

MCI‑CON
(n = 33)

NC
(n = 45)

Post‑hoc (p)

HVLT-R Total Recall 13.57 (1.2) 17.95 (0.7) 23.68 (0.7) MCI-DX < MCI-CON < NC (< 0.001–0.002)

HVLT-R Delayed Recall 2.59 (0.6) 5.11 (0.4) 8.54 (0.3) MCI-DX < MCI-CON < NC (< 0.001–0.001)

HVLT-R Retention % 47.17 (7.7) 69.13 (4.6) 88.57 (4.4) MCI-DX < MCI-CON < NC (< 0.003–0.016)

BVMT-R Trial 1 1.27 (0.5) 2.39 (0.3) 3.23 (0.3) MCI-CON < NC (0.046); MCI-DX < NC (0.001)

BVMT-R Trial 2 1.90 (0.6) 4.25 (0.4) 5.45 (0.4) MCI-DX < MCI-CON < NC (< 0.001–0.022)

BVMT-R Trial 3 1.83 (0.7) 5.69 (0.4) 7.14 (0.4) MCI-DX < MCI-CON < NC (< 0.001–0.016)

BVMT-R Total Recall 4.61 (1.5) 12.32 (0.9) 15.78 (0.9) MCI-DX < MCI-CON < NC (< 0.001–0.008)

BVMT-R Learning 1.70 (0.7) 3.4 (0.4) 4.07 (0.4) MCI-DX < NC (0.002); MCI-DX < MCI-CON (0.028)

BVMT-R Delayed Recall 1.86 (0.8) 4.87 (0.4) 6.68 (0.4) MCI-DX < MCI-CON < NC (< 0.001–0.005)

BVMT-R Retention % 64.19 (10.1) 84.5 (6.0) 88.81 (5.9) MCI-DX < NC (0.037)

BNT Total Score 13.22 (0.4) 14.16 (0.2) 14.25 (0.2) MCI-DX < MCI-CON (0.028)
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and MCI-DX performed significantly worse than MCI-
CON (p < 0.001). HVLTR-retention (F (10, 93) = 82.7, 
p < 0.001, η2 = 0.909) confirmed the group stacking: 
MCI-DX (p < 0.01) and MCI-CON (p < 0.003) performed 
worse than NC group, and MCI-DX retention scores 
were lower than MCI-CON (p < 0.016).

Regression analyses of BVMT-R, trial 1 (F (12, 
93) = 25.5, p < 0.001, η2 = 0.791) confirmed the group 
main effect. Post-hoc testing found that MCI-DX 
(p < 0.001) and MCI-CON (p < 0.046) performed sig-
nificantly worse than NC group. BVMT-R, trial 2 (F (12, 
93) = 48.3, p < 0.001, η2 = 0.877) revealed that MCI-DX 
(p < 0.001) and MCI-CON (p < 0.022) performed signifi-
cantly worse than NC, and MCI-DX performed signifi-
cantly worse than MCI-CON (p < 0.002). BVMTR-trial 
3 (F (12, 93) = 58.25, p < 0.001, η2 = 0.896) showed MCI-
DX (p < 0.001) and MCI-CON (p < 0.016) performed 
significantly worse than NC group, and MCI-DX scores 
were lower than MCI-CON (p < 0.001). BVMT-R, total 
recall (F (12, 93) = 63.2, p < 0.001, η2 = 0.904) revealed 
that MCI-DX (p < 0.001) and MCI-CON (p < 0.008) per-
formed significantly worse than NC, and MCI-DX per-
formed significantly worse than MCI-CON (p < 0.001). 
BVMTR-Learning (F (12, 93) = 21.8, p < 0.001, η2 = 0.764) 
analyses found that MCI-DX (p < 0.001), but not MCI-
CON (n.s.), performed significantly worse than NC, and 
MCI-DX performed significantly worse than MCI-CON 
(p < 0.028). BVMTR-delayed recall (F (12, 93) = 43.7, 
p < 0.001, η2 = 0.866) showed that MCI-DX (p < 0.001) 
and MCI-CON (p < 0.005) performed significantly worse 
than NC, and MCI-DX performed significantly worse 
than MCI-CON (p < 0.001). BVMTR-percent retained (F 
(12, 93) = 82.8, p < 0.001, η2 = 0.884) showed that MCI-
DX (p < 0.037), but not MCI-CON (n.s.), performed sig-
nificantly worse than NC, while MCI-CON and MCI-DX 
groups’ post-hoc contrast was not significant. Boston 
Naming total score regression model was significant for 
group as well (F (8, 93) = 1504, p < 0.001, η2 = 0.993). 

Post-hoc pairwise comparisons showed that scores were 
lower for MCI-DX vs. NC groups (p < 0.028). As pre-
dicted, no significant group differences were found in 
WAIS III vocabulary subtest, the Boston Naming Test to 
test lexical retrieval, or the American National Reading 
Test (AMNART), for cognitive reserve, between groups.

Sleep actigraphy and neurocognitive performance
As a manipulation check and to test the first hypothesis 
of the relationship of cognition to sleep in aging patients 
a cohort analysis was applied. In the full cohort, actigra-
phy and performance data were subjected to a multivaria-
ble regression model adjusted for age, current depressive 
symptoms, BMI, and education years. Table  3 shows 
the results of a tertile analysis that strongly associated 
poorer memory-based cognitive scores (i.e., HVLT-R and 
BVMT-R) with sleep fragmentation, a term for move-
ment and wake intrusion during sleep and wake after 
sleep onset or WASO. Sleep fragmentation associated 
with poorer HVLT-R, total recall score (F (7, 82) = 193.8, 
p < 0.001, η2 = 0.945) due to a significant post hoc con-
trast for Tertile 2 > 3 (p < 0.009). Sleep fragmentation 
was associated with reduced performance on HVLT-R, 
delayed recall (F (7, 82) = 70.4, p < 0.001, η2 = 0.862) with 
significant post hoc contrast for Tertile 2 > 3 (p < 0.007). 
Similarly, WASO was associated with poorer perfor-
mance in BVMT-R, trial 1 (F (7, 82) = 184.3, p < 0.001, 
η2 = 0.942) with post hoc contrast showing Tertile 1 > 3 
(p < 0.017). WASO was associated with impairment 
in HVLT-R raw total recall (F (7, 82) = 34.6, p < 0.001, 
η2 = 0.862, showing a trend for Tertile1 > 3 (p < 0.057). As 
predicted, cognitive reserve and intelligence assessments, 
AMNART, BNT and WAIS-III subtest, did not associate 
with these or other autography metrics.

Table  4 shows the multivariable regression for group 
status and actigraphy results adjusted for age, depres-
sive symptoms, years of education and BMI. Total sleep 
time showed a main effect for group (F(7, 82) = 372.2, 

Table 3 Neurocognitive Performance and Sleep Fragmentation (SF) and WASO

Multivariable regression of significant actigraphy predictors of neurocognitive performance adjusted for age, current depressive symptoms, BMI, and education years. 
SF/HVLT-R (total recall): F(7,82) = 193.8, p < .001, η2 = .945; SF/HVLT-R (delayed recall): F(7,82) = 70.4, p < .001, η2 = .862. WASO/BVMTR (trial 1): F(7, 82) = 184.3., p < .001, 
η2 = .942; WASO/HVLTR-R(total recall): F(7,82) = 34.6, p < .001, η2 = .862
a Tertile 1: n = 29; mean = 21.33 ± 3.51 counts, 12.83 to 25.89; Tertile 2: n = 29; mean = 32.59 ± 3.63 counts, 26.15 to 38.96; Tertile 3: n = 31; mean = 51.63 ± 11.72 
counts, 39.40 to 93.13
b Tertile 1: n = 29; mean = 31.65 ± 7.77 min, 19.29 to 42.80; Tertile 2: n = 29; mean = 51.38 ± 5.17 min, 42.85 to 60.29; Tertile 3: n = 31; mean = 83.63 ± 25.49 min, 61.15 
to 178.43

Neurocognitive Test Unadjusted [p (95% CI)] Adjusted [p (95% CI)] Post‑hoc

SFa aHVLT-R Raw (total recall) 0.004 (1.37, 7.15) 0.009 (0.95, 6.36) Tertile 2 > Tertile 3

HVLT-R Raw (delayed recall) 0.004 (0.81, 4.02) 0.008 (0.54, 3.56) Tertile 2 > Tertile 3

WASOb BVMT-R Raw (trial 1) 0.013 (0.27, 2.24) 0.014 (0.25, 2.14) Tertile 1 > Tertile 3

HVLT-R Raw (total recall) 0.044 (0.09, 6.01) 0.057 (-0.09, 5.66) Tertile 1 > Tertile 3
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p < 0.001, η2 = 0.969). MCI-DX group expressed shorter 
total sleep time than the NC group (p < 0.013). Sleep 
fragmentation showed a significant group effect (F (7, 
82) = 88.0, p < 0.001, η2 = 0.883). Greater sleep fragmen-
tation was observed for participants in the MCI-DX 
group than either NC group (p < 0.008) or MCI-CON 
group (p < 0.041). A main effect for Sleep latency (F 
(7, 82) = 11.5, p < 0.001, η2 = 0.496) was reflected by 
longer sleep latency in MCI-DX than MCI-CON groups 
(p < 0.008). Shorter sleep latency in MCI-CON group 
is evidence for sleep deprivation. Sleep efficiency (F (7, 
82) = 1255.0, p < 0.001, η2 = 0.991) was poorer in MCI-
DX than MCI-CON groups (p < 0.021). Main effect 
for group was found for Wake time (F (7, 82) = 104.5, 
p < 0.001, η2 = 0.899) and mean activity (F (7, 82) = 39.9, 
p < 0.001, η2 = 0.773). Higher wake time (p < 0.036) and 
mean activity (p < 0.006) were found in MCI-CON than 
NC groups.

Sleep questionnaires were examined for group differ-
ences using multivariable regression adjusted for age, 
education, depressive symptoms and BMI. The Pitts-
burg Sleep Questionnaire Inventory (PSQI) yields a 
composite score and components: sleep quality, sleep 
latency, sleep duration, sleep efficiency, sleep distur-
bances, use of sleep medications and daytime dysfunc-
tion. The model did not identify any significant group 
differences. However, the depressive symptoms covari-
ate predicted PSQI composite (p < 0.012, η2 = 0.07), 
sleep disturbance (p < 0.001 η2 = 0.114) and daytime 
dysfunction (p < 0.001, η2 = 0.190), and BMI predicted 
daytime dysfunction (p < 0.026, η2 = 0.056). Epworth 

Sleep Scale (ESS) did not find any MCI group or covari-
ate differences (p’s > 0.06-0.58), and Stanford Sleepiness 
Scale (SSS), completed on seven consecutive days, had 
poor participant compliance in 9 of 17 MCI-DX group 
participants. Notably, greater depressive symptoms was 
associated with higher SSS rating (p < 0.002, η2 = 0.12) 
[55].

SM‑RR coupling
During waking, movements induce increased respira-
tory rate that supports oxygen demands [56], but, to 
our knowledge, has not been studied systematically 
during sleep. In our work with the mattress device 
and paradigm, SM vigor (e.g., amplitude, area under 
the curve, AUC) is significantly reduced during the 
reduced arousability caused by sleep loss associated 
with neurological disease [37–40]. For the SM-RR 
coupling analysis using artificial intelligence (AI), we 
selected all cases from the MCI-DX group and partici-
pants with the lowest scores on the memory tests from 
the MCI-CON group (n = 3) to comprise the MCI/AI 
group (n = 20) and a randomly selected subset from 
the NC group termed NC/AI (n = 20). Using time 
series correlational analyses, the time latency estimates 
derived from 10 min segmentation windows across the 
2 nights were examined. As described, FFT and digital 
filters identified two data streams at cutoff frequen-
cies of 0.15  Hz (SM) and 0.37  Hz (RR). Time latency 
calculations were determined based on identifying 
events with respiratory frequency change based on a 1 
S.D. threshold. Typically, our observations have found 
that SM precedes RR change (SM → RR). However, for 
some coupling events, RR preceded SM (RR → SM) and 
were calculated in the time window. Hence, time laten-
cies may be positive or negative based on whether SM 
occurred before ( +) or after RR change (-).

The time latency algorithm was tested in the AI analy-
sis as a classifier of MCI risk. Using the cross validation 
LOOC statistic, the training data set was developed and 
tested with several validation methods (e.g., Neural Net-
works, Gaussian and Kernel methods) described in Khos-
roazad et al. [41]. Figure 3a shows the distribution of time 
latency using the Neural Network approach where zero is 
the threshold, 70 ms. Note that the clusters of data points 
separate MCI from NC cases. We note that the time 
latency values associated with increased MCI risk were 
negative, i.e. showed the atypical pattern in which RR 
change leads SM events. For the ROC diagnostics shown 
in Fig.  3b., the 70  ms time latency threshold optimized 
detection of true MCI positive cases (sensitivity) vs. false 
positives (specificity). The ROC achieved an AUC of 88% 
sensitivity and 87% specificity.

Table 4 Nocturnal Actigraphy in MCI-DX, MCI-CON and NC 
Groups

Note. Multivariable Regression of MCI status and Actigraphy (mean = 6.7 nights) 
measures adjusted with covariates age, current depressive symptoms, years 
of education, and BMI were significant for these parameters WBT, SF, TST, SE, 
SL, M.A. (p < .000); post-hoc group differences are shown (p < .001-.05) with 
superscript letters (a,b) reflect pairwise differences. No group findings emerged 
for time in bed, actual sleep percent, actual wake percent, sleep bouts, wake 
bouts, sleep bout time, immobile percent time, number of minutes moving, 
moving percent time, number of immobile phases, mean length immobility, 
mean one minute immobility, total activity score, wake after sleep onset (WASO), 
S.D. of activity counts, or largest activity count

Actigraphy Variable MCI‑DX MCI‑CON NC p

Wake Bout Time (WBT, 
min)

2.67 2.79a 2.32a 0.036a

Sleep Fragmentation (SF, 
freq)

45.75a,b 35.62b 32.79a 0.008a; 0.041b

Total Sleep Time (TST, 
min)

379.94a 431.89 454.30a 0.01a

Sleep Efficiency (SE, %) 76.74a 83.65a 82.01 0.021a

Sleep Latency (SL, min) 44.08a 13.84a 27.85 0.008a

Mean Activity Score (MA, 
freq)

13.63 18.67a 12.76a 0.006a
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Discussion
Much recent work demonstrates that sleep and circa-
dian rhythm disturbances in aging-related cognitive 
decline are clinically significant [57, 58], and are driven 
by complex neurodegenerative changes, stress-related 
cardiorespiratory and autonomic dysregulation, brain 
inflammation and incomplete β amyloid and tau CSF 
clearance [26, 27, 35, 36]. Of those who report aMCI 
symptomatology (i.e., memory loss, cognitive fog, etc.) to 
their healthcare provider, those who progress to AD are 
conservatively close to 10% per year [58, 59].

Progressing from primary care to early diagnosis in AD 
has advanced significantly through referral for screening 
and analysis of Aβ and tau biomarkers in brain, CSF and 
blood samples increasing the probability of early diagno-
sis and inclusion in therapeutic trials [10–14]. In the cur-
rent study, the MCI-DX group met both biomarker and 
cognitive phenotype criteria for early AD and showed the 
greatest impairment in mattress and actigraphic sleep 
measures. In cognitive screening retest, the MCI-DX 
group met cognitive impairment criteria on the Montreal 
Cognitive Assessment (MoCA) with selective impair-
ment in the memory domain (e.g. immediate and delayed 
recall in verbal and visuospatial memory), but not in 
intelligence or cognitive reserve measures compared 
to the community participants (MCI-CON and NC). 
The MCI-CON group scored at an intermediate level 
between the MCI-DX and NC groups in the memory 
domain and in sleep quality. These results are consistent 
with recent findings from the UK biobank on pre-diag-
nostic AD which had been determined by biomarkers 
compared to cognitive performance 4–9 years previously. 

Deficits in fluid intelligence, pairs matching and prospec-
tive memory were notably impaired in pre-diagnostic AD 
in comparison to frontotemporal dementia, progressive 
supranuclear palsy, dementia with Lewy bodies, Parkin-
son’s or multiple system atrophy [12]. Nonetheless, the 
fundamental differences between the two MCI groups 
in the current study may reflect a selection bias of who 
seeks medical care, and represents a limitation of the 
study.

To confirm the association cognitive performance and 
sleep disorder, we used seven days of actigraphy in the 
home bed. Cohort analyses identified that sleep fragmen-
tation and wake after sleep onset (WASO) were associ-
ated with poorer scores on memory tasks, but sleep 
disorder was not associated with intelligence or cognitive 
reserve measures, confirming that memory-based cog-
nitive decline was uniquely associated with poor sleep 
measures. To further examine this link in group analy-
ses, MCI-DX revealed the clearest evidence of sleep dis-
turbance, e.g., increased sleep fragmentation, increased 
sleep duration, and a trend for longer sleep latency, when 
compared to the NC group. MCI-CON group expressed 
less severe sleep disturbance: increased wake bout dura-
tion, mean activity and a trend for shorter sleep latency, a 
marker of cumulative sleep loss, compared to NC group. 
These findings confirm the seminal work of Ancoli-Israel 
et  al. regarding actigraphic sleep fragmentation and 
WASO in nursing home patients with dementia [60]. 
In community dwelling older adults, Spira et  al. found 
longer sleep duration, a marker of poor sleep quality, 
predicted poorer scores on memory, semantic fluency, 
and subjective cognitive problems [61]. Recent work 

Fig. 3 A Time Lag vs Neural Network Score for MCI and NC groups with the threshold cutoff value of 70 ms. B ROC plot comparing Gaussian, 
Kernel, and Neural Network based methods
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has found that age-related cognitive loss correlated with 
reduced REM sleep, a critical sleep stage in processing of 
memory-related neuroplasticity [62].

The second hypothesis of the study inquires whether 
home sleep recordings and application of the biometric 
algorithm may offer a possible Alzheimer’s risk signa-
ture, and provide clinical indication for biomarker test-
ing referral in the diagnosis of aMCI/early AD. Home 
sleep recordings using the novel movement-respiratory 
biometric proposed in this study may facilitate diagnosis 
of aMCI, and improve delivery of interventions for sleep 
and cognitive symptoms, although identification of an 
MCI sleep phenotype at the individual level has not yet 
been achieved with this pilot study. The AI classification 
algorithm and home mattress system may provide a use-
ful biometric for assessing individual risk for MCI risk in 
aging adults. We have previously shown in other clini-
cal samples that the movement arousal measured by the 
SM biometric can track suppressed arousability in sleep 
deprivation in chronic sleep disorder, a common problem 
in neurological conditions [37–43, 55]. For the AI clas-
sification test, patients with diagnosed aMCI and a com-
munity sample with normal cognition were tested for 
the fast (70  ms) time latency coupling linkage observed 
between SM bursts and respiratory upregulation. Diag-
nosed aMCI/AI group had consistently  higher Neural 
Network scores (i.e., below the 70  ms cutoff threshold), 
and  showed coupling reversal (i.e., RR → SM) reminis-
cent of movement arousals that follow apneic pauses in 
obstructive sleep apnea (OSA). OSA is common in aging 
and associated with cognitive deficits [63] and was not 
exclusionary, although rare: there were four cases in each 
AI group and all claimed compliance with CPAP treat-
ment. ROC findings confirm the hypothesis that the 
SM → RR coupling reflects a highly predictive measure of 
novel autonomic features not captured by actigraphy or 
polysomnography. Our recent work regarding the attenu-
ation of SM vigor with CNS impairment promoting sleep 
loss, and the robustness of respiratory coupling [41–43], 
suggests that SM periodicity may provide a neuroprotec-
tive mechanism against tissue hypoxemia during sleep 
that may be impaired in early AD. However, a significant 
limitation of the study is that we do not have longitudinal 
data on our study cohort, particularly, with relationship 
to changes in OSA and these measures over time. Future 
work will pursue the time latency hypothesis longitudi-
nally and in larger samples to further explore the relation-
ship of the SM → RR coupling to sleep apnea. In addition, 
we will study time latency changes longitudinally in the 
consensus MCI group to assess potential disease-related 
emergent properties over time.

In the present study, we observed a relationship 
between micro-sleep movements and respiratory 

variability showing respiratory upregulation is coupled 
to micro-movement arousal events. Periodic respira-
tory upregulation during sleep could support neuro-
perfusion during consolidated sleep when autonomic 
control of respiratory drive is low [64]. We have shown 
that chronic sleep loss will reduce SM vigor which, in 
the present study, was found to inefficiently drive res-
piratory upregulation. We propose that during early 
AD, and perhaps, in other neurological diseases, this 
respiratory mechanism becomes impaired, and may 
lead to suboptimal oxygenation of neural tissue during 
sleep, a potential pathway to cognitive impairment in 
aging.
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